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ABSTRACT

Stability analysis of thermocapillary convection in rectangular cavities is performed using direct numer-

ical simulations. Influence of the Reynolds number(Re), the fluid Prandtl number(Pr) and cavity aspect

ratio(Ar) on the motion is investigated. Neutral stability curves for transition to time-dependent con-

vection are delineated in the Re - Ar plane for fluids with Pr=l.0, 4.4, 6.78 and 10. Several interesting

features of these diagrams are discussed. One important conclusion is that Arc, increases as Pr decreases.

Thus, large values of both Ar and Re are necessary to induce thermocapillary oscillations for small Pr

fluids such as liquid metals and semiconductor melts. Energy analysis is also performed for the oscillatory

flow in the neighborhood of critical points in order to gain insight into the mechanisms leading to instability.

INTRODUCTION

Understanding fluid motion is crucial in some material processing technologies. In crystal growth from

the melt, single crystals with uniform material properties are desired, but homogeneity in crystals can be

destroyed if melt motion is unsteady [1]. In the terrestrial environment, buoyancy and thermocapillarity

are two major causes for convection. However, in low gravity environment, thermocapillary convection

becomes dominant [2].

Numerous experiments (for example, [3], [4] and [5]) have demonstrated the existence of instability

of thermocapillary convection, i.e. when the Marangoni number(Ma) exceeds a critical value, the motion

undergoes a transition from steady to oscillatory.

Thermocapillary flows have received considerable interest. A rich body of numerical investigations

are available in the literature (see [6], [7] and [8] ). Results of direct numerical simulation of oscillatory

thermocapiUary convection was reported in [9] by Peltier g_ Biringen. They provided a stability diagram in

the (Ar, Ma) space for a Pr=6.78 fluid, and found a minimum critical Ar near 2.3 and a minimum critical

Ma near 20,000 within the parameter range of Ar_<3.8.

Discussions of instability mechanisms can be found in [10] and [11] for dynamic thermocapillary infinite

liquid layers, and in [12] for thermocapillary liquid bridges. Description of the oscillatory instability is also

provided in [9], relating the temporal evolution of large-scale structures in the flow and their interaction

with the temperature sensitive free surface.

Here, we present a detailed stability diagram for fluids with Pr=10.0, 6.78, 4.4 and 1.0. Interesting

features in the diagram are discussed. Comparison of flow patterns is provided to investigate the influence

of Re and Ar on the motion of a Pr=10 fluid. In addition, energy analysis results are also given for

convection of a Pr=4.4 fluid with Re near both higher and lower critical points of the unstable region at

At=3.0.
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MODEL DESCRIPTION AND NUMERICAL PROCEDURE

The physical model considered is thermocapillary convection of incompressible and Newtouian fluid in a

rectangular cavity with height H and width Ar x H (Ar is the aspect ratio). Two vertical isothermal side

walls are kept at Th on the left and Tc on the right, respectively. Bottom boundary is rigid and adiabatic.

Top boundary is a fiat free surface open to a passive gas. Here, surface tension on the free surface is

assumed to be a linear function of temperature as a = ao - 7(T - To).

A dimensionless mathematical model in the stream function - vorticityformulation isused for numer-

icalsimulation, in which length, temperature, velocity and time are made dimensionless by use of scales

H, AT = (Th - To), 7AT/p and H2/u, respectively. Dimensionless parameters are defined as: Pr =

and Re _ ATH= 7--'j_, where p, v and a are dynamic viscosity,kinematic viscosity and thermal diffusivity,

respectively.

The coupled equation system issolved by a finitevolume based scheme, in which the Poisson equation

for the stream function issolved by the SOR method. Both the vorticitytransport and energy equations

are solved by the alternating direction implicit(ADI) method. All time derivativesand spatialderivatives

including boundary conditions are approximated in second order accuracy. Velocitiesare obtained as spa-

tialderivativesof stream function. Uniform mesh isused in the solution procedure with mesh resolution

of 50 to 90 points per dimensionless unit length, depending on the Reynolds number considered.

RESULTS

For thermocapillary convection of a Pr=6.78 fluidin rectangular cavities,Peltier& Biringen [9]con-

structed a stabilitydiagram in the (Ar, Ma) plane for the region Ar _<3.8and Ma<l.0xl05. Their Ma is

equivalent to our RePrAr. Some interestingcharacteristicswere found, including the existence of double

valued stabilitylimits,i.e.as Ma goes up, the flow firstchanges from stableto oscillatingat Ma_1, and then

becomes stable again when Ma_2 isreached. Ma_.,2grows monotonically with Ar, however, Mac,1 does not.

In the present work, we extend this investigation to fluidswith Pr-l.0, 4.4 and I0.0, and construct

the stabilitydiagrams in the (Ar, Re) plane. A wider range of parameter space (0.0 _<Ar _< 7.0 and 0.0<

Re <_ 1.3x104) is considered as shown by Fig. 1, in which more interestingfeatures are found. Ifwe look

at the particular fluid with Pr=4.4, the firstcriticalaspect ratio isaround 2.6. Unstable region existsfor

any At>2.6, and more interestingly,there are more than one unstable regions with Ar>6.0, i.e.ifRe goes

up from zero, one can find that the flow issteady at low Re, startsto oscillateat firstcriticalpoint, goes

back to steady state at second criticalpoint, and becomes oscillatoryagain as Re reaches itsthird critical

point. In addition, stabilitycurves of fluidswith differentPr do not cross each other. Neutral curves of

smaller Pr fluidsalways locate inside curves of larger Pr, i.e. when Pr goes smaller, the criticalaspect

ratio always becomes larger,so does the lowest criticalReynolds number. From the trend given by these

curves, we can draw a very important conclusion that, for fluidswith very low Pr, large values of critical

Ar and Re are expected for the transitionto oscillatorythermocapillary convection.

The convective flow field is strongly influenced by Re, Ar and Pr. For a Pr=10 fluid, Fig. 2 gives three

examples of streamlines at Ar=3.0 and Ar=6.0. (a) shows the flow field at Re_l for Ar=3.0, in which one

can see a bi-cellular structure with a stronger cell near the hot wall and a much weaker cell close to the

cold wall. Increasing Re to Reck2 at about 7400, one can find, in (b), that the previous strong hot wall cell

moves to the center of the cavity, and the weak cell disappears. For a larger aspect ration (At=6.0), Fig.

2 (c) exhibits the flow pattern at Reck1, from which we find that three cells exist, with the strongest one
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still near the hot wall. Further increase of Ar will result in more cellular structure in the flow field.

For convection of a Pr=10 fluid at a large aspect ratio (Ar=20), Fig. 3 displays the mean velocity

profiles and snapshots of temperature fluctuation fields for three different values of Re=1012, 1025 and

1500, respectively. Comparison of these three mean velocity profiles shows almost identical patterns even

when Re changes from 1012 to 1500, with most strong activities locating near two side walls. However,

large difference can be found among the temperature fluctuation fields. At Re=1012 (b-1), which is very

close to Re_l, a thermal wave generates near the center of the cavity and starts to die at the right edge of

the strong flow cell near the hot wall. Most area in the right part of the cavity remains pretty calm. The

wave actually propagates toward the hot wall if we look at snapshots at different time instants, which is in

agreement with [10]. As Re goes up a little bit to 1025, (b-2) shows that the starting point of the thermal

wave moves toward the cold wall. Further increase Re, this starting point keeps moving to the right until

it reaches the cold wall. Fig. (b-3) shows the case when Re=1500, in which one can see a wave generating

at the cold wall, propagating actively, and dying at the right edge of the strong flow cell near the hot wall.

ENERGY ANALYSIS

Energy analyses are performed for flows with Reynolds numbers in the neighborhoods of different criti-

cal points. The physical parameters of the oscillatory flows are decomposed into their mean and fluctuating

components, and investigations are conducted on the behavior of the fluctuation kinetic energy (k) and

the fluctuation thermal energy(0 = t2/2).

For the case Ar=3.0 and Pr=4.4, results of the energy analysis are provided here for flows with Reynolds

numbers near both lower(Re=1950) and higher(Re=5020) critical points of the unstable region. Tempo-

ral variations over one flow oscillation period are shown in Fig. 4(a-l) and (a-2) for the rate of change

of the total fluctuation kinetic energy(dK/dr = d(f kdf_), as well as its components Ikl (production),

Ik2 (diffusion) and Ik3 (dissipation). It is seen that dK/dr oscillates with its time average being equal to

zero, which means no kinetic energy is added to the flow over each period of oscillation. This is consistent

with the fact that the flow field oscillates with a stable amphtude. If we look at Ik_, Ik2 and Ik3, we

find Ik, and Ik3 providing two major contributions, with Ih always being positive (destabilizing) and I_ 3

always being negative (stabilizing). Time averages of Ik, and Ikz are much larger than that of I/¢_, however,

the phase difference between Ik_ and Ik_ is always near 7r, which means that Ik3 always cancels the effect

of Ik_. This gives the smaller term Ik_ a chance to influence the temporal behavior of dK/dr. In Fig.

4(a-2), which is for the higher critical point, one can clearly see that dK/dr oscillates at a very close am-

plitude and a very small phase difference with Ik2, while the phase difference between I_, and Ik3 is almost r.

Variation of the rate of change of the total fluctuation thermal energy (dO�dr = d(f Odf_) and its

components (It_ and It2) are given in Fig. 4(b-1) and (5-2) for the lower and higher critical points,

respectively. As expected, dO�dr oscillates with its time average being equal to zero, since the temperature

field oscillates in a limit cycle with stable amplitude. In addition, although the time averages of It_ and

It2 have the same absolute value, the oscillation amphtude of It, is much larger than that of Its. Thus

It_ dominates the oscillatory behavior of dO�dr. In both cases, the phase difference between It, and

dO�dr is very small. If we further compare the magnitude of the destabilizing fluctuation thermal energy

component (It_) and the kinetic energy components (It¢, and I_2), we find that the magnitude of thermal

energy production It, is generally two to three orders larger than that of Ik_ or Ik_. Thus, It, appears to

be the major driving source of flow instabihty.
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CONCLUSIONS

Direct numerical simulation is employed for stability analyses of thermocapiUary driven convection in

rectangular cavities. Stability boundaries are delineated in the Re - Ar plane, in which several interesting

features are found. Influence of Re and Ar on the flow patterns and the temperature fields is briefly

discussed. In addition, energy analyses are performed to gain insight into mechanisms involved in the

onset of instability. Results are presented for a Pr=4.4 fluid with Re near both higher and lower critical

points at At=3.0. Investigations on 2D and 3D convection of lower Pr as well as larger Ar and Re are in

progress.
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Figure 1: Stability diagrams in the Re - Ar plane for fluids with Pr=10.0, 6.78, 4.4 and 1.0.

(a) (b)

(c)

Figure 2: Examples of streamlines for convection of a Pr=10 fluid. Case (a): Ar=3.0, Re=1530 (,_ the first

critical number); Case (b): At=3.0, Re=7400 (_ the second critical number); Case (c): At--6.0, Re--T00

(_ the first critical number).
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Figure 3: Comparison of mean velocity profiles and temperature fluctuation fields of a Pr= 10 fluid at large

aspect ratio Ar=20. Case 1: Re=1012, which is approximately the first critical point; Case 2: Re=1025,

which is slightly higher than the first critical point; Case 3: Re=1500, which is much higher than the first

critical point.
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Figure 4: Temporal variation of the rate of change of the total kinetic energy ,-iW, the thermal energy

and their components I_,, It._, It.:,, It, and It.., for a Pr=4.4 fluid at Ar=3.0. (a-l) and (b-l) give results

for Re=1950 (near the lower critical point), (a-2) and (b-2) provide results for Re=5020 (near the higher

critical point).
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